Linear Algebra

October 14, 2016
(1) Linear Systems and Matrices

- Row Echelon Form
- Matrix Operations
- Inverse of matrices
- Determinants
- Linear Equations and Curve Fitting
(2) Vector Spaces
- Definition and Examples
- Subspaces
- Linear independence of vectors
- Bases and dimension for vector spaces
- Row and column spaces

System of m linear equations in n unknowns (linear system)

$$
\left\{\begin{array}{cccccccc}
a_{11} x_{1} & +a_{12} x_{2} & + & \cdots & + & a_{1 n} x_{n} & = & b_{1} \\
a_{21} x_{1} & + & a_{22} x_{2} & + & \cdots & + & a_{2 n} x_{n} & = \\
b_{2} \\
\vdots & & \vdots & & \ddots & & \vdots & = \\
\vdots \\
a_{m 1} x_{1} & + & a_{m 2} x_{2} & + & \cdots & + & a_{m n} x_{n} & = \\
b_{m}
\end{array}\right.
$$

Matrix form

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Augmented matrix

$$
\left(\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n} & b_{m}
\end{array}\right)
$$

Definition

An elementary row operation is an operation on a matrix of one of the following form.
(1) Multiply a row by a non-zero constant.
(2) Interchange two rows.
(3) Replace a row by its sum with a multiple of another row.

Definition

Two matrices A and B are said to be row equivalent if we can use elementary row operations to get B from A.

Proposition

If the augmented matrices of two linear systems are row equivalent, then the two systems are equivalent, i.e., they have the same solution set.

Definition

A matrix E is said to be in row echelon form if
(1) The first nonzero entry of each row of E is 1 .
(2) Every row of E that consists entirely of zeros lies beneath every row that contains a nonzero entry.
(3) In each row of E that contains a nonzero entry, the number of leading zeros is strictly less than that in the preceding row.

Proposition

Any matrix can be transformed into row echelon form by elementary row operations. This process is called Gaussian elimination.

Row echelon form of augmented matrix.

- Those variables that correspond to columns containing leading entries are called leading variables
- All the other variables are called free variables.

A system in row echelon form can be solved easily by back substitution.

Example

Solve the linear system

$$
\left\{\begin{array}{c}
x_{1}+x_{2}-x_{3}=5 \\
2 x_{1}-x_{2}+4 x_{3}=-2 \\
x_{1}-2 x_{2}+5 x_{3}=-4
\end{array}\right.
$$

Solution:

$$
\begin{array}{r}
\left(\begin{array}{ccc|c}
1 & 1 & -1 & 5 \\
2 & -1 & 4 & -2 \\
1 & -2 & 5 & -4
\end{array}\right)
\end{array} \begin{gathered}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{gathered} \quad\left(\begin{array}{ccc|c}
1 & 1 & -2 & 5 \\
0 & -3 & 6 & -12 \\
0 & -3 & 6 & -9
\end{array}\right)
$$

The third row of the last matrix corresponds to the equation

$$
0=3
$$

which is absurd. Therefore the solution set is empty and the system is inconsistent.

Example

Solve the linear system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=2 \\
x_{1}+x_{2}+x_{3}+2 x_{4}+2 x_{5}=3 \\
x_{1}+x_{2}+x_{3}+2 x_{4}+3 x_{5}=2
\end{array} .\right.
$$

Solution:

$$
\begin{aligned}
& \left(\begin{array}{ccccc|c}
1 & 1 & 1 & 1 & 1 & 2 \\
1 & 1 & 1 & 2 & 2 & 3 \\
1 & 1 & 1 & 2 & 3 & 2
\end{array}\right) \quad \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array} \quad\left(\begin{array}{lll|l}
1 & 1 & 1 & 1
\end{array}\right) \\
& R_{3} \rightarrow R_{3}-R_{2} \\
& 0
\end{aligned}\left(\begin{array}{llll|l}
1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Thus the system is equivalent to the following system

$$
\left\{\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5} & =2 \\
x_{4}+x_{5} & =1 \\
x_{5} & =-1
\end{aligned}\right.
$$

The solution of the system is

$$
\left\{\begin{array}{l}
x_{5}=-1 \\
x_{4}=1-x_{5}=2 \\
x_{1}=2-x_{2}-x_{3}-x_{4}-x_{5}=1-x_{2}-x_{3}
\end{array}\right.
$$

Here x_{1}, x_{4}, x_{5} are leading variables while x_{2}, x_{3} are free variables. Another way of expressing the solution is

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(1-\alpha-\beta, \alpha, \beta, 2,-1), \alpha, \beta \in \mathbb{R}
$$

Definition

A matrix E is said to be in reduced row echelon form (or E is a reduced row echelon matrix) if it satisfies all the following properties:
(1) It is in row echelon form.
(2) Each leading entry of E is the only nonzero entry in its column.

Proposition

Every matrix is row equivalent to one and only one matrix in reduced row echelon form.

Example

Find the reduced row echelon form of the matrix

$$
\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
3 & 8 & 7 & 20 \\
2 & 7 & 9 & 23
\end{array}\right)
$$

Solution:

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
3 & 8 & 7 & 20 \\
2 & 7 & 9 & 23
\end{array}\right) \quad \begin{array}{l}
R_{2} \rightarrow R_{2}-3 R_{1} \\
R_{3} \rightarrow R_{3}-2 R_{1} \\
\end{array} \quad\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & 2 & 4 & 8 \\
0 & 3 & 7 & 15
\end{array}\right) \\
& \xrightarrow{R_{2} \rightarrow \frac{1}{2} R_{2}}\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & 1 & 2 & 4 \\
0 & 3 & 7 & 15
\end{array}\right) \quad \xrightarrow{R_{3} \rightarrow R_{3}-3 R_{2}} \quad\left(\begin{array}{cccc}
1 & 2 & 1 & 4 \\
0 & 1 & 2 & 4 \\
0 & 0 & 1 & 3
\end{array}\right) \\
& \xrightarrow{R_{1} \rightarrow R_{1}-2 R_{2}}\left(\begin{array}{cccc}
1 & 0 & -3 & -4 \\
0 & 1 & 2 & 4 \\
0 & 0 & 1 & 3
\end{array}\right) \quad \begin{array}{l}
R_{1} \rightarrow R_{1}+3 R_{3} \\
R_{2} \rightarrow \xrightarrow{R_{2}}-2 R_{3}
\end{array} \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 3
\end{array}\right)
\end{aligned}
$$

Example

Solve the linear system

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=5 \\
x_{1}+2 x_{2}+2 x_{3}+3 x_{4}=4 \\
x_{1}+2 x_{2}+x_{3}+2 x_{4}=3
\end{array}\right.
$$

Solution:

$$
\begin{aligned}
& \left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 2 & 3 & 4 \\
1 & 2 & 1 & 2 & 3
\end{array}\right) \quad \begin{array}{l}
R_{2} \rightarrow R_{2}-R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array} \quad\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 0 & -1 & -1 & -1 \\
0 & 0 & -2 & -2 & -2
\end{array}\right) \\
& \xrightarrow{R_{2} \longrightarrow-R_{2}}\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & -2 & -2 & -2
\end{array}\right) \quad R_{3} \rightarrow R_{3}+2 R_{2} \quad\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & 0 & 1 & 1 \\
0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \xrightarrow[\longrightarrow]{R_{1} \rightarrow R_{1}-3 R_{2}}\left(\begin{array}{lllll}
1 & 2 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Now x_{1}, x_{3} are leading variables while x_{2}, x_{4} are free variables. The solution of the system is

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(2-2 \alpha-\beta, \alpha, 1-\beta, \beta), \alpha, \beta \in \mathbb{R}
$$

Theorem

Let

$$
\mathbf{A x}=\mathbf{b}
$$

be a linear system, where \mathbf{A} is an $m \times n$ matrix. Let \mathbf{R} be the unique $m \times(n+1)$ reduced row echelon matrix of the augmented matrix (A|b). Then the system has
(1) no solution if the last column of \mathbf{R} contains a leading entry.
(2) unique solution if (1) does not holds and all variables are leading variables.
(3) infinitely many solutions if (1) does not holds and there exists at least one free variables.

Theorem

Let \mathbf{A} be an $n \times n$ matrix. Then homogeneous linear system

$$
\mathbf{A x}=\mathbf{0}
$$

with coefficient matrix \mathbf{A} has only trivial solution if and only if \mathbf{A} is row equivalent to the identity matrix \mathbf{I}.

Definition

We define the following operations for matrices.
1 Addition: Let $\mathbf{A}=\left[a_{i j}\right]$ and $\mathbf{B}=\left[b_{i j}\right]$ be two $m \times n$ matrices. Define

$$
[\mathbf{A}+\mathbf{B}]_{i j}=a_{i j}+b_{i j} .
$$

That is

$$
\begin{aligned}
& \left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)+\left(\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m 1} & b_{m 2} & \cdots & b_{m n}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}
\end{array}\right) .
\end{aligned}
$$

Definition

2 Scalar multiplication: Let $\mathbf{A}=\left[a_{i j}\right]$ be an $m \times n$ matrix and c be a scalar. Then

$$
[c \mathbf{A}]_{i j}=c a_{i j}
$$

That is

$$
c\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(\begin{array}{cccc}
c a_{11} & c a_{12} & \cdots & c a_{1 n} \\
c a_{21} & c a_{22} & \cdots & c a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c a_{m 1} & c a_{m 2} & \cdots & c a_{m n}
\end{array}\right)
$$

Definition

3 Matrix multiplication: Let $\mathbf{A}=\left[a_{i j}\right]$ be an $m \times n$ matrix and $\mathbf{B}=\left[b_{j k}\right]$ be an $n \times r$. Then their matrix product $\mathbf{A B}$ is an $m \times r$ matrix where

$$
[\mathbf{A B}]_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}=a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+\cdots+a_{i n} b_{n k}
$$

For example: If \mathbf{A} is a 3×2 matrix and \mathbf{B} is a 2×2 matrix, then
$\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right)\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)=\left(\begin{array}{ll}a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\ a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22} \\ a_{31} b_{11}+a_{32} b_{21} & a_{31} b_{12}+a_{32} b_{22}\end{array}\right)$
is a 3×2 matrix.
(1) A zero matrix, denoted by $\mathbf{0}$, is a matrix whose entries are all zeros.
(2) An identity matrix, denoted by \mathbf{I}, is a square matrix that has ones on its principal diagonal and zero elsewhere.

Theorem (Properties of matrix algebra)

Let A, B and C be matrices of appropriate sizes to make the indicated operations possible and a, b be real numbers, then following identities hold.
(1) $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$
(2) $\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$
(3) $\mathbf{A}+\mathbf{0}=\mathbf{0}+\mathbf{A}=\mathbf{A}$
(4) $a(\mathbf{A}+\mathbf{B})=a \mathbf{A}+a \mathbf{B}$
(5) $(a+b) \mathbf{A}=a \mathbf{A}+b \mathbf{A}$
(6) $a(b \mathbf{A})=(a b) \mathbf{A}$
(7) $a(\mathbf{A B})=(a \mathbf{A}) \mathbf{B}=\mathbf{A}(a \mathbf{B})$
(8) $A(B C)=(A B) C$
(0) $A(B+C)=A B+A C$
(10) $(\mathbf{A}+\mathbf{B}) \mathbf{C}=\mathbf{A C}+\mathbf{B C}$
(11) $\mathrm{A} 0=0 \mathrm{~A}=0$
(12) $\mathbf{A I}=\mathbf{I A}=\mathbf{A}$

Proof.

We only prove (8) and the rest are obvious. Let $\mathbf{A}=\left[a_{i j}\right]$ be $m \times n, \mathbf{B}=\left[b_{j k}\right]$ be $n \times r$ and $\mathbf{C}=\left[c_{k l}\right]$ be $r \times s$ matrices. Then

$$
\begin{aligned}
{[(\mathbf{A B}) \mathbf{C}]_{i l} } & =\sum_{k=1}^{r}[\mathbf{A B}]_{i k} c_{k l} \\
& =\sum_{k=1}^{r}\left(\sum_{j=1}^{n} a_{i j} b_{j k}\right) c_{k l} \\
& =\sum_{j=1}^{n} a_{i j}\left(\sum_{k=1}^{r} b_{j k} c_{k l}\right) \\
& =\sum_{j=1}^{n} a_{i j}[\mathbf{B C}]_{j l} \\
& =[\mathbf{A}(\mathbf{B C})]_{i l}
\end{aligned}
$$

Remarks:

(1) In general, $\mathbf{A B} \neq \mathbf{B A}$. For example:

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \text { and } \mathbf{B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

Then

$$
\begin{aligned}
& \mathbf{A B}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right) \\
& \mathbf{B A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)
\end{aligned}
$$

(2) $\mathbf{A B}=\mathbf{0}$ does not implies that $\mathbf{A}=\mathbf{0}$ or $\mathbf{B}=\mathbf{0}$. For example:

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \neq \mathbf{0} \text { and } \mathbf{B}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \neq \mathbf{0}
$$

But

$$
\mathbf{A B}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Definition

Let $\mathbf{A}=\left[a_{i j}\right]$ be an $m \times n$ matrix. Then the transpose of \mathbf{A} is the $n \times m$ matrix defined by interchanging rows and columns and is denoted by \mathbf{A}^{T}, i.e.,

$$
\left[\mathbf{A}^{T}\right]_{j i}=a_{i j} \text { for } 1 \leq j \leq n, 1 \leq i \leq m .
$$

Example

(1) $\left(\begin{array}{ccc}2 & 0 & 5 \\ 4 & -1 & 7\end{array}\right)^{T}=\left(\begin{array}{cc}2 & 4 \\ 0 & -1 \\ 5 & 7\end{array}\right)$
(2) $\left(\begin{array}{ccc}7 & -2 & 6 \\ 1 & 2 & 3 \\ 5 & 0 & 4\end{array}\right)^{T}=\left(\begin{array}{ccc}7 & 1 & 5 \\ -2 & 2 & 0 \\ 6 & 3 & 4\end{array}\right)$

Theorem (Properties of transpose)

For any $m \times n$ matrices \mathbf{A} and \mathbf{B},
(1) $\left(\mathbf{A}^{T}\right)^{T}=\mathbf{A}$;
(2) $(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T}$;
(3) $(c \mathbf{A})^{T}=c \mathbf{A}^{T}$;
(4) $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$.

Definition

A square matrix \mathbf{A} is said to be invertible, if there exists a matrix B such that

$$
\mathbf{A B}=\mathbf{B A}=\mathbf{I} .
$$

We say that \mathbf{B} is a (multiplicative) inverse of A.

Theorem

If \mathbf{A} is invertible, then the inverse of \mathbf{A} is unique.

Proof.

Suppose \mathbf{B}_{1} and \mathbf{B}_{2} are multiplicative inverses of \mathbf{A}. Then

$$
\mathbf{B}_{2}=\mathbf{B}_{2} \mathbf{I}=\mathbf{B}_{2}\left(\mathbf{A} \mathbf{B}_{1}\right)=\left(\mathbf{B}_{2} \mathbf{A}\right) \mathbf{B}_{1}=\mathbf{I} \mathbf{B}_{1}=\mathbf{B}_{1}
$$

The unique inverse of \mathbf{A} is denoted by \mathbf{A}^{-1}.

Proposition

The 2×2 matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is invertible if and only if ad - bc $\neq 0$, in which case

$$
\mathbf{A}^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Proposition

Let \mathbf{A} and \mathbf{B} be two invertible $n \times n$ matrices.
(1) \mathbf{A}^{-1} is invertible and $\left(\mathbf{A}^{-1}\right)^{-1}=\mathbf{A}$;
(2) For any nonnegative integer k, \mathbf{A}^{k} is invertible and $\left(\mathbf{A}^{k}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{k}$;
(3) The product $\mathbf{A B}$ is invertible and

$$
(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}
$$

(9) A^{T} is invertible and

$$
\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}
$$

Proof.

We prove (3) only.

$$
\begin{aligned}
& (\mathbf{A B})\left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)=\mathbf{A}\left(\mathbf{B B}^{-1}\right) \mathbf{A}^{-1}=\mathbf{A} \mid \mathbf{A}^{-1}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I} \\
& \left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)(\mathbf{A B})=\mathbf{B}^{-1}\left(\mathbf{A}^{-1} \mathbf{A}\right) \mathbf{B}=\mathbf{B}^{-1} \mathbf{I} \mathbf{B}=\mathbf{B}^{-1} \mathbf{B}=\mathbf{I}
\end{aligned}
$$

Therefore $\mathbf{A B}$ is invertible and $\mathbf{B}^{-1} \mathbf{A}^{-1}$ is the inverse of $\mathbf{A B}$.

Theorem

If the $n \times n$ matrix \mathbf{A} is invertible, then for any n-vector \mathbf{b} the system $\mathbf{A x}=\mathbf{b}$ has the unique solution $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$.

Example

Solve the system

$$
\left\{\begin{array}{l}
4 x_{1}+6 x_{2}=6 \\
5 x_{1}+9 x_{2}=18
\end{array}\right.
$$

Solution: Let $\mathbf{A}=\left(\begin{array}{ll}4 & 6 \\ 5 & 9\end{array}\right)$. Then

$$
\mathbf{A}^{-1}=\frac{1}{(4)(9)-(5)(6)}\left(\begin{array}{cc}
9 & -6 \\
-5 & 4
\end{array}\right)=\left(\begin{array}{cc}
\frac{3}{2} & -1 \\
-\frac{5}{6} & \frac{2}{3}
\end{array}\right)
$$

Thus the solution is

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}=\left(\begin{array}{cc}
\frac{3}{2} & -1 \\
-\frac{5}{6} & \frac{2}{3}
\end{array}\right)\binom{6}{18}=\binom{-9}{7}
$$

Therefore $\left(x_{1}, x_{2}\right)=(-9,7)$.

Definition

A square matrix \mathbf{E} is called an elementary matrix if it can be obtained by performing a single elementary row operation on \mathbf{I}.

Proposition

Let \mathbf{E} be the elementary matrix obtained by performing a certain elementary row operation on \mathbf{I}. Then the result of performing the same elementary row operation on a matrix \mathbf{A} is EA.

Proposition

Every elementary matrix is invertible.

Example

Examples of elementary matrices associated to elementary row operations and their inverses.
$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Elementary } \\ \text { row operation }\end{array} & \begin{array}{c}\text { Interchanging } \\ \text { two rows }\end{array} & \begin{array}{c}\text { Multiplying a row } \\ \text { by a nonzero constant }\end{array} & \begin{array}{c}\text { Adding a multiple of } \\ \text { a row to another row }\end{array} \\ \hline \text { Elementary matrix } & \left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) & \left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3\end{array}\right) \\ \text { Inverse } & \left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) & \left(\begin{array}{lll}1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right) \quad\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad\left(\begin{array}{ll} \\ \hline\end{array}\right.$

Linear Algebra

Theorem

Let A be a square matrix. Then the following statements are equivalent.
(1) \mathbf{A} is invertible
(2) \mathbf{A} is row equivalent to \mathbf{I}
(3) A is a product of elementary matrices

Proof.

It follows easily from the fact that an $n \times n$ reduced row echelon matrix is invertible if and only if it is the identity matrix \mathbf{I}.

Let \mathbf{A} be an invertible matrix. Then the above theorem tells us that there exists elementary matrices $\mathbf{E}_{1}, \mathbf{E}_{2}, \cdots, \mathbf{E}_{k}$ such that

$$
\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{A}=\mathbf{I}
$$

Multiplying both sides by $\left(\mathbf{E}_{1}\right)^{-1}\left(\mathbf{E}_{2}\right)^{-1} \cdots\left(\mathbf{E}_{k-1}\right)^{-1}\left(\mathbf{E}_{k}\right)^{-1}$ we have

$$
\mathbf{A}=\left(\mathbf{E}_{1}\right)^{-1}\left(\mathbf{E}_{2}\right)^{-1} \cdots\left(\mathbf{E}_{k-1}\right)^{-1}\left(\mathbf{E}_{k}\right)^{-1}
$$

Therefore

$$
\mathbf{A}^{-1}=\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{2} \mathbf{E}_{1}
$$

by Proposition 3.4.

Theorem

Let \mathbf{A} be a square matrix. Suppose we can preform elementary row operation to the augmented matrix $(\mathbf{A} \mid \mathbf{I})$ to obtain a matrix of the form $(\mathbf{I} \mid \mathbf{E})$, then $\mathbf{A}^{-1}=\mathbf{E}$.

Proof.

Let $\mathbf{E}_{1}, \mathbf{E}_{2}, \cdots, \mathbf{E}_{k}$ be elementary matrices such that

$$
\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{2} \mathbf{E}_{1}(\mathbf{A} \mid \mathbf{I})=(\mathbf{I} \mid \mathbf{E}) .
$$

Then the multiplication on the left submatrix gives

$$
\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{A}=\mathbf{I}
$$

and the multiplication of the right submatrix gives

$$
\mathbf{E}=\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{2} \mathbf{E}_{1} \mathbf{I}=\mathbf{A}^{-1} .
$$

Example

Find the inverse of

$$
\left(\begin{array}{lll}
4 & 3 & 2 \\
5 & 6 & 3 \\
3 & 5 & 2
\end{array}\right)
$$

Solution:

$$
\begin{gathered}
\xrightarrow{R_{1} \rightarrow R_{1}-R_{3}} \xrightarrow{\substack{R_{2} \rightarrow R_{2}-5 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1}}}\left(\begin{array}{lll|lll}
4 & 3 & 2 \\
5 & 6 & 3 & 1 & 0 & 0 \\
3 & 5 & 2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\end{gathered}\left(\begin{array}{ccc|ccc}
1 & -2 & 0 \\
5 & 6 & 3 & 1 & 0 & -1 \\
3 & 5 & 2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), ~\left(\begin{array}{ccc|ccc}
1 & -2 & 0 & 1 & 0 & -1 \\
0 & 16 & 3 \\
0 & 11 & 2 & -5 & 1 & 5 \\
-3 & 0 & 4
\end{array}\right),
$$

$$
\begin{aligned}
& \xrightarrow{R_{2} \rightarrow R_{2}-R_{3}}\left(\begin{array}{ccc|ccc}
1 & -2 & 0 & 1 & 0 & -1 \\
0 & 5 & 1 & -2 & 1 & 1 \\
0 & 11 & 2 & -3 & 0 & 4
\end{array}\right) \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}} \underset{R_{3} \rightarrow R_{3}-5 R_{2}}{R_{1} \rightarrow R_{1}+2 R_{2}}\left(\begin{array}{ccc|ccc}
1 & -2 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1 & -2 & 2 \\
0 & 5 & 1 \\
1 & -2 & 0 & -2 & 1 & 1 \\
0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & -2 & -7 & 11
\end{array}\right)
\end{aligned}
$$

Therefore

$$
\mathbf{A}^{-1}=\left(\begin{array}{ccc}
3 & -4 & 3 \\
1 & -2 & 2 \\
-7 & 11 & -9
\end{array}\right)
$$

Example

Find a 3×2 matrix \mathbf{X} such that

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 2 \\
1 & 3 & 4
\end{array}\right) \mathbf{X}=\left(\begin{array}{cc}
0 & -3 \\
-1 & 4 \\
2 & 1
\end{array}\right)
$$

Solution:

$$
\left.\left.\begin{array}{rl}
R_{2} \rightarrow R_{2}-5 R_{1} \\
R_{3} \\
& \xrightarrow{R_{3}-3 R_{1}} \\
R_{2} \leftrightarrow R_{3} \\
1 & 3
\end{array}\right) 4 \begin{array}{lll|ll}
1 & 2 & 3 & 0 & -3 \\
2 & 1 & 2 & -1 & 4 \\
2 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \xrightarrow{R_{3} \rightarrow R_{3}+3 R_{2}} \xrightarrow{R_{3} \rightarrow-R_{3}}\left(\begin{array}{ccc|cc}
1 & 2 & 3 & 0 & -3 \\
0 & 1 & 1 & 2 & 4 \\
0 & 0 & -1 & 5 & 22 \\
1 & 2 & 3 & 0 & -3 \\
0 & 1 & 1 & 2 & 4 \\
0 & 0 & 1 & -5 & -22
\end{array}\right) \\
& \begin{array}{c}
R_{1} \rightarrow R_{1}-3 R_{3} \\
R_{2} \\
R_{1} \rightarrow R_{2}-R_{3} \\
R_{1}-2 R_{2}
\end{array}\left(\begin{array}{lll|cc}
1 & 2 & 0 & 15 & 63 \\
0 & 1 & 0 & 7 & 26 \\
0 & 5 & 1 & -5 & -22 \\
1 & 0 & 0 & 1 & 11 \\
0 & 1 & 0 & 7 & 26 \\
0 & 0 & 1 & -5 & -22
\end{array}\right)
\end{aligned}
$$

Therefore we may take

$$
\mathbf{X}=\left(\begin{array}{cc}
1 & 11 \\
7 & 26 \\
-5 & -22
\end{array}\right)
$$

Definition

Let $\mathbf{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix.
(1) The ij-th minor of \mathbf{A} is the determinant $M_{i j}$ of the $(n-1) \times(n-1)$ submatrix that remains after deleting the i-th row and the j-th column of \mathbf{A}.
(2) The ij-th cofactor of \mathbf{A} is defined by

$$
A_{i j}=(-1)^{i+j} M_{i j}
$$

Definition

Let $\mathbf{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix. The determinant $\operatorname{det}(\mathbf{A})$ of \mathbf{A} is defined inductively as follow.
(1) If $n=1$, then $\operatorname{det}(\mathbf{A})=a_{11}$.
(2) If $n>1$, then

$$
\operatorname{det}(\mathbf{A})=\sum_{k=1}^{n} a_{1 k} A_{1 k}=a_{11} A_{11}+a_{12} A_{12}+\cdots+a_{1 n} A_{1 n}
$$

where $A_{i j}$ is the ij-th cofactor of \mathbf{A}.

Example

When $n=1,2$ or 3 , we have the following.
(1) The determinant of a 1×1 matrix is

$$
\left|a_{11}\right|=a_{11}
$$

(2) The determinant of a 2×2 matrix is

$$
\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

(3) The determinant of a 3×3 matrix is

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

Example

$$
\begin{aligned}
& \left|\begin{array}{llll}
4 & 3 & 0 & 1 \\
3 & 2 & 0 & 1 \\
1 & 0 & 0 & 3 \\
0 & 1 & 2 & 1
\end{array}\right| \\
= & 4\left|\begin{array}{lll}
2 & 0 & 1 \\
0 & 0 & 3 \\
1 & 2 & 1
\end{array}\right|-3\left|\begin{array}{lll}
3 & 0 & 1 \\
1 & 0 & 3 \\
0 & 2 & 1
\end{array}\right|+0\left|\begin{array}{lll}
3 & 2 & 1 \\
1 & 0 & 3 \\
0 & 1 & 1
\end{array}\right|-1\left|\begin{array}{lll}
3 & 2 & 0 \\
1 & 0 & 0 \\
0 & 1 & 2
\end{array}\right| \\
= & 4\left(2\left|\begin{array}{ll}
0 & 3 \\
2 & 1
\end{array}\right|-0\left|\begin{array}{ll}
0 & 3 \\
1 & 1
\end{array}\right|+1\left|\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right|\right) \\
& -3\left(3\left|\begin{array}{ll}
0 & 3 \\
2 & 1
\end{array}\right|-0\left|\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right|+1\left|\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right|\right) \\
= & -\left(3\left|\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right|-2\left|\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right|+0\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right|\right) \\
= & 4(2(-6))-3(3(-6)+1(2))-(-2(2))
\end{aligned}
$$

Theorem

Let $\mathbf{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix. Then

$$
\operatorname{det}(\mathbf{A})=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) a_{1 \sigma(1)} a_{2 \sigma(2)} \cdots a_{n \sigma(n)}
$$

where S_{n} is the set of all permutations of $\{1,2, \cdots, n\}$ and

$$
\operatorname{sign}(\sigma)= \begin{cases}1 & \text { if } \sigma \text { is an even permutation } \\ -1 & \text { if } \sigma \text { is an odd permutation }\end{cases}
$$

(1) There are n ! number of terms for an $n \times n$ determinant.
(2) Here we write down the 4 ! $=24$ terms of a 4×4 determinant.

$$
\begin{aligned}
& \left|\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right| \\
& a_{11} a_{22} a_{33} a_{44}-a_{11} a_{22} a_{34} a_{43}-a_{11} a_{23} a_{32} a_{44}+a_{11} a_{23} a_{34} a_{42} \\
& +a_{11} a_{24} a_{32} a_{43}-a_{11} a_{24} a_{33} a_{42}-a_{12} a_{21} a_{33} a_{44}+a_{12} a_{21} a_{34} a_{43} \\
& +\quad+a_{12} a_{23} a_{31} a_{44}-a_{12} a_{23} a_{34} a_{41}-a_{12} a_{24} a_{31} a_{43}+a_{12} a_{24} a_{33} a_{41} \\
& +a_{13} a_{21} a_{32} a_{44}-a_{13} a_{21} a_{34} a_{42}-a_{13} a_{22} a_{31} a_{44}+a_{13} a_{22} a_{34} a_{41} \\
& +a_{13} a_{24} a_{31} a_{42}-a_{13} a_{24} a_{32} a_{41}-a_{14} a_{21} a_{32} a_{43}+a_{14} a_{21} a_{33} a_{42} \\
& +a_{14} a_{22} a_{31} a_{43}-a_{14} a_{22} a_{33} a_{41}-a_{14} a_{23} a_{31} a_{42}+a_{14} a_{23} a_{32} a_{41}
\end{aligned}
$$

Theorem

The determinant of an $n \times n$ matrix $\mathbf{A}=\left[a_{i j}\right]$ can be obtained by expansion along any row or column, i.e., for any $1 \leq i \leq n$, we have

$$
\operatorname{det}(\mathbf{A})=a_{i 1} A_{i l}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n}
$$

and for any $1 \leq j \leq n$, we have

$$
\operatorname{det}(\mathbf{A})=a_{1 j} A_{1 j}+a_{2 j} A_{2 j}+\cdots+a_{n j} A_{n j} .
$$

Example

We can expand the determinant along the third column.

$$
\begin{aligned}
\left|\begin{array}{llll}
4 & 3 & 0 & 1 \\
3 & 2 & 0 & 1 \\
1 & 0 & 0 & 3 \\
0 & 1 & 2 & 1
\end{array}\right| & =-2\left|\begin{array}{lll}
4 & 3 & 1 \\
3 & 2 & 1 \\
1 & 0 & 3
\end{array}\right| \\
& =-2\left(-3\left|\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right|+2\left|\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right|\right) \\
& =-2(-3(8)+2(11)) \\
& =4
\end{aligned}
$$

Proposition

Properties of determinant.
(1) $\operatorname{det}(\mathbf{I})=1$;
(2) Suppose that the matrices $\mathbf{A}_{1}, \mathbf{A}_{2}$ and \mathbf{B} are identical except for their i-th row (or column) and that the i-th row (or column) of \mathbf{B} is the sum of the i-th row (or column) of \mathbf{A}_{1} and \mathbf{A}_{2}, then $\operatorname{det}(\mathbf{B})=\operatorname{det}\left(\mathbf{A}_{1}\right)+\operatorname{det}\left(\mathbf{A}_{2}\right)$;
(3) If \mathbf{B} is obtained from \mathbf{A} by multiplying a single row (or column) of \mathbf{A} by the constant k, then $\operatorname{det}(\mathbf{B})=k \operatorname{det}(\mathbf{A})$;
(9) If \mathbf{B} is obtained from \mathbf{A} by interchanging two rows (or columns), then $\operatorname{det}(\mathbf{B})=-\operatorname{det}(\mathbf{A})$;

Proposition

(5) If \mathbf{B} is obtained from \mathbf{A} by adding a constant multiple of one row (or column) of \mathbf{A} to another row (or column) of \mathbf{A}, then $\operatorname{det}(\mathbf{B})=\operatorname{det}(\mathbf{A})$;
(6) If two rows (or columns) of \mathbf{A} are identical, then $\operatorname{det}(\mathbf{A})=0$;
(7) If \mathbf{A} has a row (or column) consisting entirely of zeros, then $\operatorname{det}(\mathbf{A})=0$;
(8) $\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A})$;
(9) If \mathbf{A} is a triangular matrix, then $\operatorname{det}(\mathbf{A})$ is the product of the diagonal elements of \mathbf{A};
(10) $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$.

Example

$$
\begin{aligned}
\left|\begin{array}{cccc}
2 & 2 & 5 & 5 \\
1 & -2 & 4 & 1 \\
-1 & 2 & -2 & -2 \\
-2 & 7 & -3 & 2
\end{array}\right| & =\left|\begin{array}{cccc}
0 & 6 & -3 & 3 \\
1 & -2 & 4 & 1 \\
0 & 0 & 2 & -1 \\
0 & 3 & 5 & 4
\end{array}\right|\left(\begin{array}{c}
R_{1} \rightarrow R_{1}-2 R_{2} \\
R_{3} \rightarrow R_{3}+R_{2} \\
R_{4} \rightarrow R_{4}+2 R_{2}
\end{array}\right) \\
& =-\left|\begin{array}{ccc}
6 & -3 & 3 \\
0 & 2 & -1 \\
3 & 5 & 4
\end{array}\right| \\
& =-3\left|\begin{array}{ccc}
2 & -1 & 1 \\
0 & 2 & -1 \\
3 & 5 & 4
\end{array}\right| \\
& =-3\left(2\left|\begin{array}{cc}
-1 & 1 \\
5 & 4
\end{array}\right|+3\left|\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right|\right) \\
& =-69
\end{aligned}
$$

Example

$$
\begin{aligned}
\left|\begin{array}{cccc}
2 & 2 & 5 & 5 \\
1 & -2 & 4 & 1 \\
-1 & 2 & -2 & -2 \\
-2 & 7 & -3 & 2
\end{array}\right| & =\left|\begin{array}{cccc}
2 & 6 & -3 & 3 \\
1 & 0 & 0 & 0 \\
-1 & 0 & 2 & -1 \\
-2 & 3 & 5 & 4
\end{array}\right|\left(\begin{array}{l}
C_{2} \rightarrow C_{2}+2 C_{1} \\
C_{3} \rightarrow C_{3}-4 C_{1} \\
C_{4} \rightarrow C_{4}-C_{1}
\end{array}\right) \\
& =-\left|\begin{array}{ccc}
6 & -3 & 3 \\
0 & 2 & -1 \\
3 & 5 & 4
\end{array}\right| \\
& =-\left|\begin{array}{ccc}
0 & 0 & 3 \\
2 & 1 & -1 \\
-5 & 9 & 4
\end{array}\right|\binom{C_{1} \rightarrow C_{1}-2 C_{3}}{C_{2} \rightarrow C_{2}+C_{3}} \\
& =-3\left|\begin{array}{cc}
2 & 1 \\
-5 & 9
\end{array}\right| \\
& =-69
\end{aligned}
$$

Example

Let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ be real numbers and

$$
\mathbf{A}=\left(\begin{array}{ccccc}
1 & \alpha_{1} & \alpha_{2} & \cdots & \alpha_{n} \\
1 & x & \alpha_{2} & \cdots & \alpha_{n} \\
1 & \alpha_{1} & x & \cdots & \alpha_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \alpha_{1} & \alpha_{2} & \cdots & x
\end{array}\right)
$$

Show that

$$
\operatorname{det}(\mathbf{A})=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right) .
$$

Solution: Note that A is an $(n+1) \times(n+1)$ matrix. For simplicity we assume that $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ are distinct. Observe that we have the following 3 facts.
(1) $\operatorname{det}(\mathbf{A})$ is a polynomial of degree n in x;
(2) $\operatorname{det}(\mathbf{A})=0$ when $x=\alpha_{i}$ for some i;
(3) The coefficient of x^{n} of $\operatorname{det}(\mathbf{A})$ is 1 .

Then the equality follows by the factor theorem.

Example

The Vandermonde determinant is defined as

$$
V\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left|\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right|
$$

Show that

$$
V\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) .
$$

Solution: Using factor theorem, the equality is a consequence of the following 3 facts.
(1) $V\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is a polynomial of degree $n(n-1) / 2$ in $x_{1}, x_{2}, \cdots, x_{n}$;
(2) For any $i \neq j, V\left(x_{1}, x_{2}, \cdots, x_{n}\right)=0$ when $x_{i}=x_{j}$;
(3) The coefficient of $x_{2} x_{3}^{2} \cdots x_{n}^{n-1}$ of $V\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is 1 .

Lemma

Let $\mathbf{A}=\left[a_{i j}\right]$ be an $n \times n$ matrix and \mathbf{E} be an $n \times n$ elementary matrix. Then

$$
\operatorname{det}(\mathbf{E A})=\operatorname{det}(\mathbf{E}) \operatorname{det}(\mathbf{A})
$$

Definition

Let \mathbf{A} be a square matrix. We say that \mathbf{A} is singular if the system $\mathbf{A x}=\mathbf{0}$ has non-trivial solution. A square matrix is nonsingular if it is not singular.

Theorem

The following properties of an $n \times n$ matrix \mathbf{A} are equivalent.
(1) \mathbf{A} is nonsingular, i.e., the system $\mathbf{A x}=\mathbf{0}$ has only trivial solution $\mathbf{x}=\mathbf{0}$.
(2) \mathbf{A} is invertible, i.e., \mathbf{A}^{-1} exists.
(3) $\operatorname{det}(\mathbf{A}) \neq 0$.
(9) \mathbf{A} is row equivalent to \mathbf{I}.
(5) For any n-column vector \mathbf{b}, the system $\mathbf{A x}=\mathbf{b}$ has a unique solution.
(0) For any n-column vector \mathbf{b}, the system $\mathbf{A x}=\mathbf{b}$ has a solution.

Proof.

We prove $(3) \Leftrightarrow(4)$ and leave the rest as an exercise. Multiply elementary matrices $\mathbf{E}_{1}, \mathbf{E}_{2}, \cdots, \mathbf{E}_{k}$ to \mathbf{A} so that

$$
\mathbf{R}=\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{1} \mathbf{A}
$$

is in reduced row echelon form. Then by the lemma above, we have

$$
\operatorname{det}(\mathbf{R})=\operatorname{det}\left(\mathbf{E}_{k}\right) \operatorname{det}\left(\mathbf{E}_{k-1}\right) \cdots \operatorname{det}\left(\mathbf{E}_{1}\right) \operatorname{det}(\mathbf{A})
$$

Since determinant of elementary matrices are always nonzero, we have $\operatorname{det}(\mathbf{A})$ is nonzero if and only if $\operatorname{det}(\mathbf{R})$ is nonzero. It is easy to see that the determinant of a reduced row echelon matrix is nonzero if and only if it is the identity matrix \mathbf{I}.

Theorem

Let A and B be two $n \times n$ matrices. Then

$$
\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})
$$

Proof.

If \mathbf{A} is not invertible, then $\mathbf{A B}$ is not invertible and $\operatorname{det}(\mathbf{A B})=0=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$. If \mathbf{A} is invertible, then there exists elementary matrices $\mathbf{E}_{1}, \mathbf{E}_{2}, \cdots, \mathbf{E}_{k}$ such that $\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{1}=\mathbf{A}$. Hence

$$
\begin{aligned}
\operatorname{det}(\mathbf{A B}) & =\operatorname{det}\left(\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{1} \mathbf{B}\right) \\
& =\operatorname{det}\left(\mathbf{E}_{k}\right) \operatorname{det}\left(\mathbf{E}_{k-1}\right) \cdots \operatorname{det}\left(\mathbf{E}_{1}\right) \operatorname{det}(\mathbf{B}) \\
& =\operatorname{det}\left(\mathbf{E}_{k} \mathbf{E}_{k-1} \cdots \mathbf{E}_{1}\right) \operatorname{det}(\mathbf{B}) \\
& =\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})
\end{aligned}
$$

Definition

Let \mathbf{A} be a square matrix. The adjoint matrix of \mathbf{A} is

$$
\operatorname{adj} \mathbf{A}=\left[A_{i j}\right]^{T},
$$

where $A_{i j}$ is the ij-th cofactor of \mathbf{A}. In other words,

$$
[\operatorname{adj} \mathbf{A}]_{i j}=A_{j i}
$$

Theorem

Let A be a square matrix. Then

$$
\mathbf{A} \operatorname{adj} \mathbf{A}=(\operatorname{adj} \mathbf{A}) \mathbf{A}=\operatorname{det}(\mathbf{A}) \mathbf{I},
$$

where $\operatorname{adj} \mathbf{A}$ is the adjoint matrix. In particular if \mathbf{A} is invertible, then

$$
\mathbf{A}^{-1}=\frac{1}{\operatorname{det}(\mathbf{A})} \operatorname{adj} \mathbf{A}
$$

Proof.

The second statement follows easily from the first. For the first statement, we have

$$
\begin{aligned}
{[\mathbf{A} \operatorname{adj} \mathbf{A}]_{i j} } & =\sum_{l=1}^{n} a_{i l}[\operatorname{adj} \mathbf{A}]_{l j} \\
& =\sum_{l=1}^{n} a_{i l} A_{j l} \\
& =\delta_{i j} \operatorname{det}(\mathbf{A})
\end{aligned}
$$

where

$$
\delta_{i j}=\left\{\begin{array}{ll}
1, & i=j \\
0, & i \neq j
\end{array} .\right.
$$

Therefore $\mathbf{A a d j} \mathbf{A}=\operatorname{det}(A) \mathbf{I}$ and similarly $(\operatorname{adj} \mathbf{A}) \mathbf{A}=\operatorname{det}(A) \mathbf{I}$.

Example

Let $\mathbf{A}=\left(\begin{array}{lll}4 & 3 & 2 \\ 5 & 6 & 3 \\ 3 & 5 & 2\end{array}\right)$. We have

$$
\begin{aligned}
& \operatorname{det}(\mathbf{A})=4\left|\begin{array}{ll}
6 & 3 \\
5 & 2
\end{array}\right|-3\left|\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right|+2\left|\begin{array}{ll}
5 & 6 \\
3 & 5
\end{array}\right|=4(-3)-3(1)+2(7)=-1, \\
& \operatorname{adj} \mathbf{A}=\left(\begin{array}{ccc}
\left|\begin{array}{ll}
6 & 3 \\
5 & 2
\end{array}\right| & -\left|\begin{array}{ll}
3 & 2 \\
5 & 2
\end{array}\right| & \left|\begin{array}{ll}
3 & 2 \\
6 & 3
\end{array}\right| \\
-\left|\begin{array}{ll}
5 & 3 \\
3 & 2
\end{array}\right| & \left|\begin{array}{cc}
4 & 2 \\
3 & 2
\end{array}\right| & -\left|\begin{array}{ll}
4 & 2 \\
5 & 3
\end{array}\right| \\
\left|\begin{array}{cc}
5 & 6 \\
3 & 5
\end{array}\right| & -\left|\begin{array}{ll}
4 & 3 \\
3 & 5
\end{array}\right| & \left|\begin{array}{ll}
4 & 3 \\
5 & 6
\end{array}\right|
\end{array}\right)=\left(\begin{array}{ccc}
-3 & 4 & -3 \\
-1 & 2 & -2 \\
7 & -11 & 9
\end{array}\right) .
\end{aligned}
$$

Therefore

$$
\mathbf{A}^{-1}=\frac{1}{-1}\left(\begin{array}{ccc}
-3 & 4 & -3 \\
-1 & 2 & -2 \\
7 & -11 & 9
\end{array}\right)=\left(\begin{array}{ccc}
3 & -4 & 3 \\
1 & -2 & 2 \\
-7 & 11 & -9
\end{array}\right)
$$

Theorem (Cramer's rule)

Consider the $n \times n$ linear system $\mathbf{A x}=\mathbf{b}$, with

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

If $\operatorname{det}(\mathbf{A}) \neq 0$, then the i-th entry of the unique solution
$\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ is

$$
x_{i}=\operatorname{det}(\mathbf{A})^{-1} \operatorname{det}\left(\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{i-1} & \mathbf{b} & \mathbf{a}_{i+1} & \cdots & \mathbf{a}_{n}
\end{array}\right]\right),
$$

where the matrix in the last factor is obtained by replacing the i-th column of \mathbf{A} by \mathbf{b}.

Proof.

$$
\begin{aligned}
x_{i} & =\left[\mathbf{A}^{-1} \mathbf{b}\right]_{i} \\
& =\frac{1}{\operatorname{det}(\mathbf{A})}[(\operatorname{adj} \mathbf{A}) \mathbf{b}]_{i} \\
& =\frac{1}{\operatorname{det}(\mathbf{A})} \sum_{l=1}^{n} A_{l i} b_{l} \\
& =\frac{1}{\operatorname{det}(\mathbf{A})}\left|\begin{array}{ccccc}
a_{11} & \cdots & b_{1} & \cdots & a_{1 n} \\
a_{21} & \cdots & b_{2} & \cdots & a_{2 n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n 1} & \cdots & b_{n} & \cdots & a_{n n}
\end{array}\right|
\end{aligned}
$$

Example

Use Cramer's rule to solve the linear system

$$
\left\{\begin{array}{c}
x_{1}+4 x_{2}+5 x_{3}=2 \\
4 x_{1}+2 x_{2}+5 x_{3}=3 \\
-3 x_{1}+3 x_{2}-x_{3}=1
\end{array}\right.
$$

Solution: Let $\mathbf{A}=\left(\begin{array}{ccc}1 & 4 & 5 \\ 4 & 2 & 5 \\ -3 & 3 & -1\end{array}\right)$.

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =1\left|\begin{array}{cc}
2 & 5 \\
3 & -1
\end{array}\right|-4\left|\begin{array}{cc}
4 & 5 \\
-3 & -1
\end{array}\right|+5\left|\begin{array}{cc}
4 & 2 \\
-3 & 3
\end{array}\right| \\
& =1(-17)-4(11)+5(18) \\
& =29
\end{aligned}
$$

Thus by Cramer's rule,

$$
\begin{aligned}
& x_{1}=\frac{1}{29}\left|\begin{array}{ccc}
2 & 4 & 5 \\
3 & 2 & 5 \\
1 & 3 & -1
\end{array}\right|=\frac{33}{29} \\
& x_{2}=\frac{1}{29}\left|\begin{array}{ccc}
1 & 2 & 5 \\
4 & 3 & 5 \\
-3 & 1 & -1
\end{array}\right|=\frac{35}{29} \\
& x_{3}=\frac{1}{29}\left|\begin{array}{ccc}
1 & 4 & 2 \\
4 & 2 & 3 \\
-3 & 3 & 1
\end{array}\right|=-\frac{23}{29}
\end{aligned}
$$

Theorem

Let n be a non-negative integer, and $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)$ be $n+1$ points in \mathbb{R}^{2} such that $x_{i} \neq x_{j}$ for any $i \neq j$. Then there exists unique polynomial

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

of degree at most n such that $p\left(x_{i}\right)=y_{i}$ for all $0 \leq i \leq n$. The coefficients of $p(x)$ satisfy the linear system

$$
\left(\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) .
$$

Theorem

Moreover, we can write down the polynomial function $y=p(x)$ directly as

$$
\left|\begin{array}{cccccc}
1 & x & x^{2} & \cdots & x^{n} & y \\
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} & y_{0} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} & y_{1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n} & y_{n}
\end{array}\right|=0 .
$$

Proof.

Expanding the determinant, one sees that the equation is of the form $y=p(x)$ where $p(x)$ is a polynomial of degree at most n. Observe that the determinant is zero when $(x, y)=\left(x_{i}, y_{i}\right)$ for some $0 \leq i \leq n$ since two rows would be identical in this case. Now it is well known that such polynomial is unique.

Example

Find the equation of straight line passes through the points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.

Solution: The equation of the required straight line is

$$
\begin{aligned}
\left|\begin{array}{ccc}
1 & x & y \\
1 & x_{0} & y_{0} \\
1 & x_{1} & y_{1}
\end{array}\right| & =0 \\
\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+\left(x_{0} y_{1}-x_{1} y_{0}\right) & =0
\end{aligned}
$$

Example

Find the cubic polynomial that interpolates the data points $(-1,4),(1,2),(2,1)$ and $(3,16)$.

Solution: The required equation is

$$
\left|\begin{array}{ccccc}
1 & x & x^{2} & x^{3} & y \\
1 & -1 & 1 & -1 & 4 \\
1 & 1 & 1 & 1 & 2 \\
1 & 2 & 4 & 8 & 1 \\
1 & 3 & 9 & 27 & 16
\end{array}\right|=0
$$

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
1 & x & x^{2} & x^{3} & y \\
1 & -1 & 1 & -1 & 4 \\
0 & 2 & 0 & 2 & -2 \\
0 & 3 & 3 & 9 & -3 \\
0 & 4 & 8 & 28 & 12
\end{array}\right|=0 \\
& \\
& \vdots \\
& \left|\begin{array}{ccccc}
1 & x & x^{2} & x^{3} & y \\
1 & 0 & 0 & 0 & 7 \\
0 & 1 & 0 & 0 & -3 \\
0 & 0 & 1 & 0 & -4 \\
0 & 0 & 0 & 1 & 2
\end{array}\right|=0 \\
& -7+3 x+4 x^{2}-2 x^{3}+y
\end{aligned} \begin{aligned}
& =0 \\
& -7
\end{aligned} \begin{aligned}
& =7-3 x-4 x^{2}+2 x^{3}
\end{aligned}
$$

Example

Find the equation of the circle determined by the points $(-1,5),(5,-3)$ and $(6,4)$.
Solution: The equation of the required circle is

$$
\begin{aligned}
&\left|\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \\
(-1)^{2}+5^{2} & -1 & 5 & 1 \\
5^{2}+(-3)^{2} & 5 & -3 & 1 \\
6^{2}+4^{2} & 6 & 4 & 1
\end{array}\right|=0 \\
&\left|\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \\
26 & -1 & 5 & 1 \\
34 & 5 & -3 & 1 \\
52 & 6 & 4 & 1
\end{array}\right|=0 \\
&= \\
&\left|\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \\
20 & 0 & 0 & 1 \\
4 & 1 & 0 & 0 \\
2 & 0 & 1 & 0
\end{array}\right|=0 \\
& x^{2}+y^{2}-4 x-2 y-20=0
\end{aligned}
$$

Definition

A vector space over \mathbb{R} consists of a set V and two operations addition and scalar multiplication such that
(1) $\mathbf{u}+\mathbf{v}=\mathbf{u}+\mathbf{v}$, for any $\mathbf{u}, \mathbf{v} \in V$;
(2) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$, for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$;
(3) There exists $\mathbf{0} \in V$ such that $\mathbf{u}+\mathbf{0}=\mathbf{0}+\mathbf{u}=\mathbf{u}$, for any $\mathbf{u} \in V$;
(9) For any $\mathbf{u} \in V$, there exists $-\mathbf{u} \in V$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$;
(3) $a(\mathbf{u}+\mathbf{v})=a \mathbf{u}+a \mathbf{v}$, for any $a \in \mathbb{R}$ and $\mathbf{u}, \mathbf{v} \in V$;
(0) $(a+b) \mathbf{u}=a \mathbf{u}+b \mathbf{u}$, for any $a, b \in \mathbb{R}$ and $\mathbf{u} \in V$;
(1) $a(b \mathbf{u})=(a b) \mathbf{u}$, for any $a, b \in \mathbb{R}$ and $\mathbf{u} \in V$;
(8) (1) $\mathbf{u}=\mathbf{u}$, for any $\mathbf{u} \in V$.

Example (Euclidean Space)

The set

$$
\mathbb{R}^{n}=\left\{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right): x_{i} \in \mathbb{R}\right\} .
$$

with

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right),
$$

and

$$
a\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
a x_{1} \\
a x_{2} \\
\vdots \\
a x_{n}
\end{array}\right) .
$$

Example (Matrix Space)

The set of all $m \times n$ matrices

$$
M_{m \times n}=\{\mathbf{A}: \mathbf{A} \text { is an } m \times n \text { matrix. }\} .
$$

with usual matrix addition and scaler multiplication.

Example (Space of continuous functions)

The set of all continuous functions

$$
C[a, b]=\{f: f \text { is a continuous function on }[a, b] .\}
$$

on $[a, b]$ with

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(a f)(x) & =a(f(x))
\end{aligned}
$$

Example (Space of polynomials over \mathbb{R})

The set of all polynomial

$$
P_{n}=\left\{a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}: a_{0}, a_{1}, \cdots, a_{n-1} \in \mathbb{R} .\right\}
$$

over \mathbb{R} of degree less than n with

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}\right)+\left(b_{0}+b_{1} x+\cdots+b_{n-1} x^{n-1}\right) \\
= & \left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\cdots+\left(a_{n-1}+b_{n-1}\right) x^{n-1}
\end{aligned}
$$

and

$$
a\left(a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}\right)=a a_{0}+a a_{1} x+\cdots+a a_{n-1} x^{n-1} .
$$

Definition

Let W be a nonempty subset of the vector space V. Then W is a subspace of V if W itself is a vector space with the operations of addition and scalars multiplication defined in V.

Proposition

A nonempty subset W of a vector space V is a subspace of V if and only if it satisfies the following two conditions:
(1) If \mathbf{u} and \mathbf{v} are vectors in W, then $\mathbf{u}+\mathbf{v}$ is also in W.
(2) If \mathbf{u} is in W and c is a scalar, then $c \mathbf{u}$ is also in W.

Example

In the following examples, W is a vector subspace of V :
(1) V is any vector space; $W=V$ or $\{\mathbf{0}\}$.
(2) $V=\mathbb{R}^{n}$;
$W=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T} \in V: a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=\mathbf{0}\right\}$, where $a_{1}, a_{2}, \cdots, a_{n}$ are fixed real numbers.
(3) $V=M_{2 \times 2} ; W=\left\{\mathbf{A}=\left[a_{i j}\right] \in V: a_{11}+a_{22}=0\right\}$.
(1) V is the set al all continuous functions $C[a, b]$ on $[a, b]$; $W=\{f(x) \in V: f(a)=f(b)=0\}$.
(5) V is the set of all polynomials P_{n} of degree less than n; $W=\{p(x) \in V: p(0)=0\}$.
(0) V is the set of all polynomials P_{n} of degree less than n; $W=\left\{p(x) \in V: p^{\prime}(0)=0\right\}$.

Example

In the following examples, W is not a vector subspace of V :
(1) $V=\mathbb{R}^{2} ; W=\left\{\left(x_{1}, x_{2}\right)^{T} \in V: x_{1}=1\right\}$.
(2) $V=\mathbb{R}^{n} ; W=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{T} \in V: x_{1} x_{2}=0\right\}$.
(3) $V=M_{2 \times 2} ; W=\{\mathbf{A} \in V: \operatorname{det}(\mathbf{A})=0\}$.

Example

Let $\mathbf{A} \in M_{m \times n}$, then the solution set of the homogeneous linear system

$$
\mathbf{A x}=\mathbf{0}
$$

is a subspace of \mathbb{R}^{n}. This subspace if called the solution space of the system.

Proposition

Let U and W be two subspaces of a vector space V, then
(1) $U \cap W=\{\mathbf{x} \in V: \mathbf{x} \in U$ and $\mathbf{x} \in W\}$ is subspace of V.
(2) $U+W=\{\mathbf{u}+\mathbf{w} \in V: \mathbf{u} \in U$ and $\mathbf{w} \in W\}$ is subspace of V.
(3) $U \cup W=\{\mathbf{x} \in V: \mathbf{x} \in U$ or $\mathbf{x} \in W\}$ is a subspace of V if and only if $U \subset W$ or $W \subset U$.

Definition

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k} \in V$. The linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ is a vector in V of the form

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k} \cdot, \quad c_{1}, c_{2}, \cdots, c_{n} \in \mathbb{R}
$$

The span of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ is the set of all linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ and is denoted by $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$. If W is a subspace of V and $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}=W$, then we say that $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ is a spanning set of W or $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ span the subspace W.

Proposition

Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k} \in V$. Then

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}
$$

is a subspace of V.

Example

Let $V=\mathbb{R}^{3}$.
(1) If $\mathbf{v}_{1}=(1,0,0)^{T}$ and $\mathbf{v}_{2}=(0,1,0)^{T}$, then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\left\{(\alpha, \beta, 0)^{T}: \alpha, \beta \in \mathbb{R}\right\}$.
(2) If $\mathbf{v}_{1}=(1,0,0)^{T}, \mathbf{v}_{2}=(0,1,0)^{T}$ and $\mathbf{v}_{3}=(0,0,1)^{T}$, then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=V$.
(3) If $\mathbf{v}_{1}=(2,0,1)^{T}$ and $\mathbf{v}_{2}=(0,1,-3)^{T}$, then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\left\{(2 \alpha, \beta, \alpha-3 \beta)^{T}: \alpha, \beta \in \mathbb{R}\right\}$.
(9) If $\mathbf{v}_{1}=(1,-1,0)^{T}, \mathbf{v}_{2}=(0,1,-1)^{T}$ and $\mathbf{v}_{3}=(-1,0,1)^{T}$, then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\left\{\left(x_{1}, x_{2}, x_{3}\right)^{T}: x_{1}+x_{2}+x_{3}=0\right\}$.

Example

Let $V=P_{3}$ be the set of all polynomial of degree less than 3 .
(1) If $\mathbf{v}_{1}=x$ and $\mathbf{v}_{2}=x^{2}$, then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\{p(x) \in V: p(0)=0\}$.
(2) If $\mathbf{v}_{1}=1, \mathbf{v}_{2}=3 x-2$ and $\mathbf{v}_{3}=2 x+1$, then $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=P_{2}$.
(3) If $\mathbf{v}_{1}=1-x^{2}, \mathbf{v}_{2}=x+2$ and $\mathbf{v}_{3}=x^{2}$, then $1=\mathbf{v}_{1}+\mathbf{v}_{3}$, $x=-2 \mathbf{v}_{1}+\mathbf{v}_{2}-2 \mathbf{v}_{3}$ and $x^{2}=\mathbf{v}_{3}$. Thus $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ contains $\operatorname{span}\left\{1, x, x^{2}\right\}=P_{3}$. Therefore $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}=P_{3}$.

Example

Let $\mathbf{w}=(2,-6,3)^{T} \in \mathbb{R}^{3}, \mathbf{v}_{1}=(1,-2,-1)^{T}$ and $\mathbf{v}_{2}=(3,-5,4)^{T}$. Determine whether $\mathbf{w} \in \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

Solution: Write

$$
c_{1}\left(\begin{array}{c}
1 \\
-2 \\
-1
\end{array}\right)+c_{2}\left(\begin{array}{c}
3 \\
-5 \\
4
\end{array}\right)=\left(\begin{array}{c}
2 \\
-6 \\
3
\end{array}\right),
$$

that is

$$
\left(\begin{array}{cc}
1 & 3 \\
-2 & -5 \\
-1 & 4
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{c}
2 \\
-6 \\
3
\end{array}\right)
$$

The augmented matrix

$$
\left(\begin{array}{ccc}
1 & 3 & 2 \\
-2 & -5 & -6 \\
-1 & 4 & 3
\end{array}\right)
$$

can be reduced by elementary row operations to echelon form

$$
\left(\begin{array}{ccc}
1 & 3 & 2 \\
0 & 1 & -2 \\
0 & 0 & 19
\end{array}\right)
$$

Thus the system is inconsistent. Therefore \mathbf{w} is not a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.

Example

Let $\mathbf{w}=(-7,7,11)^{T} \in \mathbb{R}^{3}, \mathbf{v}_{1}=(1,2,1)^{T}, \mathbf{v}_{2}=(-4,-1,2)^{T}$ and $\mathbf{v}_{3}=(-3,1,3)^{T}$. Express \mathbf{w} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$ and v_{3}.

Solution: Write

$$
c_{1}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)+c_{2}\left(\begin{array}{c}
-4 \\
-1 \\
2
\end{array}\right)+c_{3}\left(\begin{array}{c}
-3 \\
1 \\
3
\end{array}\right)=\left(\begin{array}{c}
-7 \\
7 \\
11
\end{array}\right)
$$

that is

$$
\left(\begin{array}{ccc}
1 & -4 & -3 \\
2 & -1 & 1 \\
1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
-7 \\
7 \\
11
\end{array}\right) .
$$

The augmented matrix

$$
\left(\begin{array}{cccc}
1 & -4 & -3 & -7 \\
2 & -1 & 1 & 7 \\
1 & 2 & 3 & 11
\end{array}\right)
$$

can be reduced by elementary row operations to echelon form

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 5 \\
0 & 1 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The system has more than one solution. For example we can write

$$
\mathbf{w}=5 \mathbf{v}_{1}+3 \mathbf{v}_{2},
$$

or

$$
\mathbf{w}=3 \mathbf{v}_{1}+\mathbf{v}_{2}+2 \mathbf{v}_{3} .
$$

Example

Let $\mathbf{v}_{1}=(1,-1,0)^{T}, \mathbf{v}_{2}=(0,1,-1)^{T}$ and $\mathbf{v}_{3}=(-1,0,1)^{T}$.
Observe that
(1) one of the vectors is a linear combination of the other. For example

$$
\mathbf{v}_{3}=-\mathbf{v}_{1}-\mathbf{v}_{2}
$$

(2) $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ contains a smaller spanning set. For example

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\} .
$$

(3) there exists numbers $c_{1}, c_{2}, c_{3} \in \mathbb{R}$, not all zero, such that $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0}$. For example

$$
\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}=\mathbf{0} .
$$

Definition

The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ in a vector space V are said be be linearly independent if the equation

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}
$$

has only the trivial solution $c_{1}=c_{2}=\cdots=c_{k}=0$. The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are said be be linearly dependent if they are not linearly independent.

Theorem

Let V be a vector space and $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k} \in V$. Then the following statements are equivalent.
(1) None of the vectors is a linear combination of the other vectors.
(2) There does not exists a smaller spanning set of $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$.
(3) Every vector in $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ can be expressed in only one way as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$.
(9) The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are linear independent.

Example

The standard unit vectors

$$
\begin{aligned}
\mathbf{e}_{1} & =(1,0,0, \cdots, 0)^{T} \\
\mathbf{e}_{2} & =(0,1,0, \cdots, 0)^{T} \\
& \vdots \\
\mathbf{e}_{n} & =(0,0,0, \cdots, 1)^{T}
\end{aligned}
$$

are linearly independent in \mathbb{R}^{n}.

Example

Let $\mathbf{v}_{1}=(1,2,2,1)^{T}, \mathbf{v}_{2}=(2,3,4,1)^{T}, \mathbf{v}_{3}=(3,8,7,5)^{T}$ be vectors in \mathbb{R}^{4}. Write the equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}=\mathbf{0}$ as the system

$$
\left\{\begin{array}{c}
c_{1}+2 c_{2}+3 c_{3}=0 \\
2 c_{1}+3 c_{2}+8 c_{3}=0 \\
2 c_{1}+4 c_{2}+7 c_{3}=0 \\
c_{1}+c_{2}+5 c_{3}=0
\end{array} .\right.
$$

The augmented matrix of the system reduces to the echelon form

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Thus the only solution is $c_{1}=c_{2}=c_{3}=0$. Therefore $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ are linearly independent.

Example

Let $\mathbf{v}_{1}=(2,1,3)^{T}, \mathbf{v}_{2}=(5,-2,4)^{T}, \mathbf{v}_{3}=(3,8,-6)^{T}$ and $\mathbf{v}_{4}=(2,7,-4)^{T}$ be vectors in \mathbb{R}^{3}. Write the equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+c_{4} \mathbf{v}_{4}=\mathbf{0}$ as the system

$$
\left\{\begin{array}{c}
c_{1}+5 c_{2}+3 c_{3}+2 c_{4}=0 \\
c_{1}-2 c_{2}+8 c_{3}+7 c_{4}=0 \\
3 c_{1}+4 c_{2}-6 c_{3}-4 c_{4}=0
\end{array}\right.
$$

Because there are more unknowns than equations, thus it has a nontrivial solution. Therefore $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly dependent.

Theorem

(1) Two nonzero vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$ are linearly dependent if and only if they are proportional, i.e., there exists $c \in \mathbb{R}$ such that $\mathbf{v}_{2}=\mathbf{c} \mathbf{v}_{1}$.
(2) If one of the vectors of $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k} \in V$ is zero, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are linearly dependent.
(3) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ be n vectors in \mathbb{R}^{n} and

$$
\mathbf{A}=\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]
$$

be the $n \times n$ matrix having them as its column vectors. Then $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ are linearly independent if and only if $\operatorname{det}(\mathbf{A}) \neq 0$.
(4) Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ be k vectors in \mathbb{R}^{n}, with $k>n$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are linearly dependent.

Proof.

(1) Obvious.
(2) We may assume $\mathbf{v}_{1}=\mathbf{0}$. Then

$$
1 \cdot \mathbf{v}_{1}+0 \cdot \mathbf{v}_{2}+\cdots+0 \cdot \mathbf{v}_{k}=\mathbf{0}
$$

Therefore $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}$ are linearly dependent.
(3) The vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ are linearly independent
$\Leftrightarrow \quad$ The system $\mathbf{A} \mathbf{x}=\mathbf{0}$ has only trivial solution.
$\Leftrightarrow \quad \mathbf{A}$ is nonsingular
$\Leftrightarrow \quad \operatorname{det}(\mathbf{A}) \neq 0$.
(4) Since the system

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}
$$

has more unknown than number of equations, it must have nontrivial solution for $c_{1}, c_{2}, \cdots, c_{k}$. Therefore $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}$ are linearly dependent.

Definition

A set S of vectors in a vector space V is called a basis for V provided that
(1) the vectors in S are linearly independent, and
(2) the vectors in S span V.

Example

(1) The vectors

$$
\begin{aligned}
\mathbf{e}_{1} & =(1,0,0, \cdots, 0)^{T} \\
\mathbf{e}_{2} & =(0,1,0, \cdots, 0)^{T} \\
& \vdots \\
\mathbf{e}_{n} & =(0,0,0, \cdots, 1)^{T}
\end{aligned}
$$

constitute a basis for \mathbb{R}^{n} and is called the standard basis for \mathbb{R}^{n}.
(2) The vectors $\mathbf{v}_{1}=(1,1,1)^{T}, \mathbf{v}_{2}=(0,1,1)^{T}$ and $\mathbf{v}_{3}=(2,0,1)^{T}$ constitute a basis for \mathbb{R}^{3}.

Theorem

If $V=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$, then any collection of m vectors in V, with $m>n$, are linearly dependent.

Proof

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{m} \in V, m>n$. Then we can write

$$
\begin{aligned}
\mathbf{u}_{1} & =a_{11} \mathbf{v}_{1}+a_{12} \mathbf{v}_{2}+\cdots+a_{1 n} \mathbf{v}_{n} \\
\mathbf{u}_{2} & =a_{21} \mathbf{v}_{1}+a_{22} \mathbf{v}_{2}+\cdots+a_{2 n} \mathbf{v}_{n} \\
\vdots & =\vdots \\
\mathbf{u}_{m} & =a_{m 1} \mathbf{v}_{1}+a_{m 2} \mathbf{v}_{2}+\cdots+a_{m n} \mathbf{v}_{n}
\end{aligned}
$$

We have

$$
\begin{aligned}
c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{m} \mathbf{u}_{m} & =\sum_{i=1}^{m}\left(c_{i} \sum_{j=1}^{n} a_{i j} \mathbf{v}_{j}\right) \\
& =\sum_{j=1}^{n}\left(\sum_{i=1}^{m} c_{i} a_{i j}\right) \mathbf{v}_{j}
\end{aligned}
$$

Proof.

Consider the system

Since the number of unknown is more than the number of equations, there exists nontrivial solution for $c_{1}, c_{2}, \cdots, c_{m}$ and

$$
c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{2}+\cdots+c_{m} \mathbf{u}_{m}=\mathbf{0} .
$$

Therefore the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{m}$ are linearly dependent.

Theorem

Any two bases for a vector space consist of the same number of vectors.

Proof.

Let $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{m}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ be two bases for V. Since $V=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ and $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \cdots, \mathbf{u}_{m}\right\}$ are linearly independent, we have $m \leq n$ by Theorem 4.2. Similarly, we have $n \leq m$.

Definition

The dimension of a vector space V is the number of vectors of a finite basis of V. We say that V is of dimension n (or V is an n-dimensional vector space) if V has a basis consisting of n vectors. We say that V is an infinite dimensional vector space if it does not have a finite basis.

Example

(1) The Euclidean space \mathbb{R}^{n} is of dimension n.
(2) The polynomials $1, x, x^{2}, \cdots, x^{n-1}$ constitute a basis of the set of all polynomials P_{n} of degree less than n. Thus P_{n} is of dimension n.
(3) The set of all $m \times n$ matrices $M_{m \times n}$ is of dimension $m n$.
(9) The set of all continuous functions $C[a, b]$ is an infinite dimensional vector space.

Theorem

Let V be an n-dimension vector space and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ be a subset of V consists of n vectors. Then the following statement for S are equivalent.
(1) S spans V;
(2) S is linearly independent;
(3) S is a basis for V.

Proof.

We need to prove that S is linearly independent if and only if $\operatorname{span}(S)=V$. Suppose S is linearly independent and $\operatorname{span}(S) \neq V$. Then there exists $\mathbf{v} \in V$ such that $\mathbf{v} \notin \operatorname{span}(S)$. Since $S \cup\{\mathbf{v}\}$ contains $n+1$ vectors, it is linearly dependent by Theorem 4.2. Thus there exists $c_{1}, c_{2}, \cdots, c_{n}, c_{n+1}$, not all zero, such that

$$
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\cdots+c_{n} \mathbf{v}_{n}+c_{n+1} \mathbf{v}=\mathbf{0}
$$

Now $c_{n+1}=0$ since $\mathbf{v} \notin \operatorname{span}(S)$. This implies that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{n}\right\}$ which leads to a contradiction. Suppose $\operatorname{span}(S)=V$ and S is linearly dependent. Then by Theorem 3.4, there exists a proper subset $S^{\prime} \subset S$ consists of k vectors, $k<n$, such that $\operatorname{span}\left(S^{\prime}\right)=V$. By Theorem 4.2, any set of more than k vectors are linearly dependent. This contradicts to that V is of dimension n.

Theorem

Let V be an n-dimension vector space and let S be a subset of V. Then
(1) If S is linearly independent, then S is contained in a basis for V;
(2) If S spans V, then S contains a basis for V.

Proof.

(1) If $\operatorname{span}(S)=V$, then S is a basis for V. If $\operatorname{span}(S) \neq V$, then there exists $\mathbf{v}_{1} \in V$ such that $\mathbf{v}_{1} \notin \operatorname{span}(S)$. Now $S \cup\left\{\mathbf{v}_{1}\right\}$ is linearly independent. Similarly if $\operatorname{span}\left(S \cup\left\{\mathbf{v}_{1}\right\}\right) \neq V$, there exists $\mathbf{v}_{2} \in V$ such that $S \cup\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent. This process may be continued until $S \cup\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ contains n vectors. Then $S \cup\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{k}\right\}$ constitutes a basis for V.
(2) If S is linearly independent, then S is a basis for V. If S is linearly dependent, then there exists $\mathbf{v}_{1} \in S$ which is a linear combination of the remaining vectors in S. After removing \mathbf{v}_{1} from S, the remaining vectors will still span V. This process may be continued until we obtain a set of linearly independent vectors consisting of n vectors which consists a basis for V.

Theorem

Let \mathbf{A} be an $m \times n$ matrix. The set of solutions to the system

$$
A x=0
$$

form a vector subspace of \mathbb{R}^{n}. The dimension of the solution space equals to the number of free variables.

Example

Find a basis for the solution space of the system

$$
\left\{\begin{array}{l}
3 x_{1}+6 x_{2}-x_{3}-5 x_{4}+5 x_{5}=0 \\
2 x_{1}+4 x_{2}-x_{3}-3 x_{4}+2 x_{5}=0 \\
3 x_{1}+6 x_{2}-2 x_{3}-4 x_{4}+x_{5}=0
\end{array}\right.
$$

Solution: The coefficient matrix \mathbf{A} reduces to the echelon form

$$
\left(\begin{array}{ccccc}
1 & 2 & 0 & -2 & 3 \\
0 & 0 & 1 & -1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

The leading variables are x_{1}, x_{3}. The free variables are x_{2}, x_{4}, x_{5}. The solution space is

$$
\operatorname{span}\left\{(-2,1,0,0,0)^{T},(2,0,1,1,0)^{T},(-3,0,-4,0,1)^{T}\right\}
$$

Definition

Let \mathbf{A} be an $m \times n$ matrix.
(1) The null space $\operatorname{Null}(\mathbf{A})$ of \mathbf{A} is the solution space to $\mathbf{A x}=\mathbf{0}$.
(2) The row space $\operatorname{Row}(\mathbf{A})$ of \mathbf{A} is the vector subspace of \mathbb{R}^{n} spanned by the m row vectors of \mathbf{A}.
(3) The column space $\operatorname{Col}(\mathbf{A})$ of \mathbf{A} is the vector subspace of \mathbb{R}^{m} spanned by the n column vectors of \mathbf{A}.

Theorem

Let \mathbf{R} be a row echelon form. Then
(1) The set of vectors obtained by setting one free variable equal to 1 and other free variables to be zero constitutes a basis for Null(R).
(2) The set of non-zero rows constitutes a basis for $\operatorname{Row}(\mathbf{R})$.
(3) The set of columns associated with lead variables constitutes a basis for $\operatorname{Col}(\mathbf{R})$

Example

Let

$$
\mathbf{A}=\left(\begin{array}{ccccc}
1 & -3 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & -2 \\
0 & 0 & 0 & 1 & 7 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Find a basis for $\operatorname{Null}(\mathbf{A}), \operatorname{Row}(\mathbf{A})$ and $\operatorname{Col}(\mathbf{A})$.

Solution:

(1) The set $\left\{(3,1,0,0,0)^{T},(-3,0,2,-7,1)^{T}\right\}$ constitutes a basis for $\operatorname{Null}(\mathbf{A})$.
(2) The set $\{(1,-3,0,0,3),(0,0,1,0,-2),(0,0,0,1,7)\}$ constitutes a basis for $\operatorname{Row}(\mathbf{A})$.
(3) The set $\left\{(1,0,0,0)^{T},(0,1,0,0)^{T},(0,0,1,0)^{T}\right\}$ constitutes a basis for $\operatorname{Col}(\mathbf{A})$.

Theorem

Let \mathbf{R} be the reduced row echelon form of \mathbf{A}. Then
(1) $\operatorname{Null}(\mathbf{A})=\operatorname{Null}(\mathbf{R})$.
(2) $\operatorname{Row}(\mathbf{A})=\operatorname{Row}(\mathbf{R})$.
(3) The column vectors of \mathbf{A} associated with the column containing the leading entries of \mathbf{R} constitute a basis for $\operatorname{Col}(\mathbf{A})$.

Example

Find a basis for $\operatorname{Null}(\mathbf{A}), \operatorname{Row}(\mathbf{A})$ and $\operatorname{Col}(\mathbf{A})$ where

$$
\mathbf{A}=\left(\begin{array}{ccccc}
1 & -2 & 3 & 2 & 1 \\
2 & -4 & 8 & 3 & 10 \\
3 & -6 & 10 & 6 & 5 \\
2 & -4 & 7 & 4 & 4
\end{array}\right)
$$

Solution: The reduced row echelon form of \mathbf{A} is

$$
\left(\begin{array}{ccccc}
1 & -2 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Thus
(1) the set $\left\{(2,1,0,0,0)^{T},(-3,0,-2,4,1)^{T}\right\}$ constitutes a basis for $\operatorname{Null}(\mathbf{A})$.
(2) the set $\{(1,-2,0,0,3),(0,0,1,0,2),(0,0,0,1,-4)\}$ constitutes a basis for $\operatorname{Row}(\mathbf{A})$.
(3) the 1st, 3rd and 4th columns contain leading entries. Therefore the set $\left\{(1,2,3,2)^{T},(3,8,10,7)^{T},(2,3,6,4)^{T}\right\}$ constitutes a basis for $\operatorname{Col}(\mathbf{A})$.

Definition

Let \mathbf{A} be an $m \times n$ matrix. The dimension of
(1) the solution space of $\mathbf{A x}=\mathbf{0}$ is called the nullity of \mathbf{A}.
(2) the row space is called the row rank of \mathbf{A}.
(3) the column space is called the column rank of \mathbf{A}.

Theorem

Let \mathbf{A} be an $m \times n$ matrix. Then the row rank of \mathbf{A} is equal to the column rank of \mathbf{A}.

Proof.

Both of them are equal to the number of leading entries of the reduced row echelon form of \mathbf{A}.

The common value of the row and column rank of the matrix \mathbf{A} is called the rank of \mathbf{A}.

Theorem (Rank-Nullity Theorem)

Let \mathbf{A} be an $m \times n$ matrix. Then

$$
\operatorname{rank}(\mathbf{A})+\operatorname{Nullity}(\mathbf{A})=n .
$$

Proof.

The nullity of \mathbf{A} is equal to the number of free variables of the reduced row echelon form of \mathbf{A}. Now the left hand side is the sum of the number of leading variables and free variables and is of course n.

